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To put it in the framework of information processing, stochastic resonance (SR) is a phenomenon in which
the transfer of information from input to output signals can be significantly increased by noise with appropriate

(nonzero) intensity. The minimum requirements for SR are generally input signals, nonlinearity, and noise, in
addition to a quantifier to measure the efficiency of information transfer. We study a simple threshold system
and propose an adaptation mechanism for system parameters, such as a threshold and noise intensity (i.e.,
temperature), which are held fixed in a normal SR setting. Our emphasis is put on parameter dynamics induced
by this adaptation, which we call self-tuning (ST), and on how this dynamics modifies or changes the SR
picture with respect to information processing efficiency. As a measure for performance of the threshold system

we take mutual information and the signal-to-noise ratio. These quantities are calculated by an analytical
method and by a simulational one. ST of temperature results in oscillatory time variation in temperature with
its average located around the temperature at which performance is maximized in the SR setting. ST of a
threshold turns out to improve performance in the weak noise region.
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I. INTRODUCTION

In some nonlinear systems increasing noise can lead to
the formation of more regular temporal and/or spatial struc-
tures. Stochastic resonance (SR), which represents one of the
salient and ubiquitous examples of this nontrivial behavior,
stands for phenomena for which the ordered response of a
system to weak input signals can be significantly increased
by selecting or tuning proper noise intensity [1-3].

To be more concrete, let us take a simple threshold system
[4,5], with a threshold 6 and in contact with a reservoir with
temperature 7, which produces noises to be fed to the thresh-
old system. If one employs some measure mpp for system
performance with respect to information processing (IP), this
measure becomes a function of 6 and 7, which are kept
constant during the measurement of mp(6,7). In the usual
SR setting, one pays attention to its 7" dependence, and SR
means that mp(60,T) for a fixed 6 shows a peak structure
with its maximum attained at 77(6)(>0) which may gener-
ally depend on 6. For convenience we may call 7* the SR
temperature.

In this paper we extend a SR model by giving adaptation
dynamics to some system parameters, such as 6 and/or 7 and
compare myp for two systems, with and without adaptation
dynamics, partly to understand SR itself and partly to search
for some mechanisms which may contribute to the improve-
ment of system performance represented by mp. In develop-
ing a model of adaptation, we rely on a feedback mechanism,
which we call self-tuning (ST) [6,7], by which output signals
are fed back to modify system parameters. Originally an idea
of ST was developed to explain high sensitivity of auditory
systems (hair cells). To describe dynamics here one needs at
least three variables, and a limit cycle associated with the
Hopf bifurcation plays a decisive role for detection of faint
sounds [6].

Although the ST mechanism to be described below is con-
siderably simpler than the ST mechanism proposed for audi-
tory systems [6,7], we will call it ST since there are some
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points in common between the two mechanisms. That is,
choosing 6 as a system parameter to be adapted, our ST
consists of the processes where the threshold is simply de-
creasing when there is no firing, i.e., no cross-threshold
events and it is raised only if the firing event occurs. In view
of the facts that information transfer is effected via firing
events in the threshold system, and too small firing rate may
be avoided by lowering a threshold, we expect a rather good
performance irrespective of current situations of input sig-
nals and/or environment (noise source) to which the system
is exposed.

The structure of this paper is as follows. In Sec. II we
introduce a simple threshold system. After discussing its el-
ementary properties, we discuss SR based on two measures
myp, the mutual information (MI) and the signal-to-noise ra-
tio (SNR) [8].

In Sec. III ST of temperature 7, by which 7 becomes time
(n) dependent, i.e., T,, is considered. Simulation results for
time variation in 7, together with the MI between input and
output signals, are presented. We show that 7, fluctuates
around the SR temperature 7%, where the maximum of MI is
attained.

Next in Sec. IV we introduce a system with two thresh-
olds, one positive and the other negative, which are self-
tuned depending on the output from the system. We closely
study the dynamics of the thresholds and show that due to ST
of the thresholds, MI monotonically decreases as a function
of T as in the case of ST for auditory systems [6,7]. Conse-
quently there exists a crossover temperature, 7., beyond
which (i.e., T>T,,) ST may result in the deterioration of
performance for transfer of information. Section V contains
some remarks and conclusion.

II. SR IN THE SIMPLE THRESHOLD SYSTEM
A. Model and measure mp

We first introduce a simple threshold system with its out-
put y, at time n given by
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yn=®(|sn+§n|_0)v (l)

where s, and §, are the input signal and the noise at time n,
respectively, and 6 denotes the threshold. The function O (x)
takes 1(0) when x is positive (negative). Later we will often
use the word “firing” when y, is not zero. The noise §, is
assumed to be a zero average Gaussian variable with

<§n> =0,
<§n§;lq> = Ténn' > (2)

where 7, to be called temperature, measures the strength of
the noise and 9, stands for the Kronecker delta. Later in
Secs. III and IV we introduce the dynamics for 7 or 6, mak-
ing these quantities time (i.e., n) dependent.

As a measure myp for correlation between input {s,} and
output signals {y,}, we take the mutual information M(s:y)
[9], which is expressed as

M(s:y) = H, - Hy,, (3)

with H, and H,|; denoting the Shannon entropies

Hy=- 2 p()lnp(y),
y=0,1

y=0,1

Hy), = f dsp(s)[— > p(yIS)lnp(yIS)]- (4)

Here p(y) and p(s) represent the distribution function of {y,}
and {s,}, respectively, and p(y|s) is the conditional distribu-
tion function of y given the input signal s. Since we always
indicate the arguments for the function p, no confusion
would be incurred due to our use of the same functional
symbol p.

For our model, the noise & is Gaussian and we have

p(1]s) ={erfc[ (8- s)/\/Z_T] +erfc[(0+ s)/\'TT]}/Z,

p(Ols)=1-p(1]s), (5)

where erfc(x) = %T J7dt exp(—1?). As for the input signal s, we
take a sinusoidal one

s, =A, cos(wynAt), (6)

which has been widely used [1].

As the input signal s, is a deterministic function of time n,
one may wonder how p(s) could be defined. For the present
problem, let us first assume that t=nA is sampled uniformly
in the range —7/ (2w,) <t </ (2w). Then from the relation
Peos(8)ds=p(t)dt=dt/ (m/ w,), we have

pcog(s) = 1/[77\/14%_52]- (7)

It is noted that Eq. (7) is valid irrespective of the assumed
range of uniformity of ¢ [10].

We suppose that important correlations between {s,} and
{y,} consists not in ordering of the occurrence of {s,} but in
the histogram of the pair {s,,y,} or p(y|s). pes(y) is then
given with use of the relation
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Peos(Y) = j dsp(y[$)Peos(s), (8)

together with Egs. (5) and (7). Since we consider only the
sinusoidal input, Eq. (6), we will hereafter omit the subscript
cos in Egs. (7) and (8).

At this point we give two remarks. First, a so-called dy-
namical MI between two dynamical processes X(¢) and Y(z)
has gathered considerable interest, especially for biological
systems [11-13]. For example, a dynamical MI is obtained
along the similar lines as path integrals for linear quantum
systems [11]. Tt is also calculated under a Gaussian approxi-
mation to study stochastic resonance in the FitzHugh-
Nagumo model [12]. A slightly simpler expression for a dy-
namical MI is employed to study neuronal activity [13].

Second, as will be shown later in Sec. II B (Figs. 2 and 3),
M(s:y) calculated in this way, which may be called a static
MI, is remarkably similar to the SNR, which takes into ac-
count full dynamical information of the input signals. It is
also remarked here that accurate numerical calculation of
M(s:y) is rather easy, compared with such dynamical quan-
tities as SNR and the dynamical MI mentioned above. We
only need to sample the pair (s,,y,) from numerical simula-
tions and to calculate the conditional probability p(y|s) as a
histogram from the data. This property is especially desir-
able, as stated in Sec. III B, where we discuss the effects of
ST.

We proceed to another measure, the SNR [1,14], which
has been playing important roles from an early stage of SR
investigation [15]. As we now show, this can be also calcu-
lated exactly for model (1). Let us suppose that for the input
signals s(nAr)=A, cos(wynAr) we have the corresponding
output signals y,=y(nAr).

The time-correlation function ¢, is defined by

¢k=<ynyn+k> (k=0’17~~~7N_ 1)7 (9)

where the average (-+-) is over the noise &,, &, and A,
= (1/N)='=N""4,, denotes the average over the time n, which
removes the n dependence involved in A, [14]. (For a dis-
crete time power spectrum, see Chap. 12 of [16].) Since the
noise ¢, (n=1,2,...) are independent of each other, Eq. (2),

we readily see that

b= @51(,0 + V)V (1 = 80) = &80+ (1 = 6p),
(10)

where (y,) is explicitly given in Eq. (5) as
(v, ={erfc[(6- sn)/\"ﬁ] + erfc[(6+ sn)/\r’%]}/l (11)

In Eq. (I11) we see that (y,) is periodic in time r=nAr with
the period #,=/w,. This is seen intuitively by observing
from Egs. (1) and (6) that (y,) becomes large when s,
= * 1, which occurs twice per input signal period 27/ w.
Thus the function h; itself is also periodic with the period
t,/ At. For simplicity we first fix a large integer N and choose
At to be At=t,/N. Neglecting higher harmonics which are
irrelevant for SNR [1], we have
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FIG. 1. Mutual information M(s:y) (dotted line) and SNR R
(solid line) for the simple threshold system (1) as a function of 7.
The vertical line is at 7=T" and three horizontal line segments,
which we call LSy, LS,, and LS5 from the top, correspond to points
P, P,, and Pj5 introduced in Sec. III B, respectively.

hy = B cos(2k/N), (12)
with
N-1
B=(2/N) >, h; cos(2mk/N). (13)
k=0

If we define the power spectrum P, [16] as

N-1

P,= > ¢y exp[2mikn/N] (n=0,1,2, ...
k=0

N-1),
(14)

we have

0.045
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P,=g+B(N/2)[8,,+ S, n-11=g+BWN/2)[5,,+ 5,_1].

(15)

where we used the fact that P, is cyclic with period N [16].
From the above we may define SNR, which is notationally
expressed as R, by

R=Blg. (16)

R represents the ratio of the (normalized) power at frequency
2w, divided by the noise power g as in the case of continu-
ous time [1]. In passing it is noted that the summation to
obtain B [see Eq. (13)] and g, which is necessary for the
calculation of R, Eq. (16), is numerically performed by using
Eq. (11) to calculate the summands.

B. SR in a threshold system

In Fig. 1 we show M(s:y) and R for wy,=0.5, A;=0.5, and
6=1 as a function of 7. In spite of the apparent difference
between M(s:y), Eq. (3), and R, Eq. (16), we observe that
M(s:y) behaves quite similarly as R. Each function takes its
maximum at 7%=0.18, which demonstrates that the transfer
of information through the threshold system (1) is enhanced
by proper amount of noise (SR).

M(s:y) and R are shown in Figs. 2 and 3, respectively, as
a function of Ay and T for wy=0.5 and #=1. The similarity
between M(s:y) and R, presented in Figs. 1-3, states that
SNR is a good quantifier of information transfer. On the
other hand, time ordering of the input signals [Eq. (6)] is not
crucial to estimate MI between the input and output signals,
thus making a static MI based on the assumption, Eq. (7), a
good substitute for a dynamic MI [10-12].

III. SELF-TUNING OF TEMPERATURE

A. Temperature dynamics and parameter range

If we have means to control the temperature 7 of the
system and require the best performance on the threshold

004
0.03 -
0.02
0.01 ———~
0.045
0.04
0.035
0.03
0.025
0.02
0.015 FIG. 2. (Color) Mutual infor-

0.01 mation as a function of A, and
noise intensity 7.
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system (1), we would set T to be the SR temperature 7. We
now introduce adaptive dynamics for system temperature 7,
by which T,, (now a function of time n) is expected to behave
“efficiently” from a viewpoint of transinformation. From a
different viewpoint, we have in mind a thought experiment,
in which a movable living unit put in an environment with
temperature gradient moves back and forth depending on the
output from its neuron. Our results below show that the liv-
ing unit would be located around the place whose tempera-
ture is T

In developing a model for the dynamics of temperature,
we try to take into account the feedback of the output y, on
temperature at time n+1, 7,,;. Here we rely on the idea of
ST, which in short means that a parameter, controlling a fir-
ing rate of an excitable unit such as a neuron, changes so as
to enhance the firing rate if there is no firing event. On the
other hand, if there occurs a firing event, the parameter is
changed in another direction to avoid too many firing events.
(One formulation along this line for neuronal adaptation can
be found in [17].)

One simple algorithm which seems to fulfill this require-
ment employs two-parameter dynamics

T,

n+l=aTn_ﬁyn (a> LB>O)7 (17)

where y, is obtained from Eq. (1) with T in Eq. (2) replaced
by T,. When y,=0, we expect T,,, > T, to make firing easier,
leading to @>1. When y,=1, we expect T,,;<T, and B
must be positive. Of course there are many other possibilities
for the dynamics of 7, and this will be touched upon later
(see Sec. V).

The update algorithm (17) with Eq. (1) turns out to be
divergent for some parameter range of («, ) and it is impor-
tant to have some estimate about the range where conver-
gence is achieved. For the purpose we assume that 7, ap-
proaches 1y, which is estimated from
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0.06
0.04

0.02 FIG. 3. (Color) R as a function
0.01 of Ay and noise intensity 7.

T,= a’Tf_B<)’>Tf’ (18)

where (y)szfdsp(yzl |s)p(s) and p(s) is given by Eq. (7).
Equation (18) is now rewritten as

(a=DT/B=0)r, (19)

Plotting both sides of Eq. (19) as a function of T, we notice
that Eq. (19) have three solutions T;(=0<T;<Tj, if the
condition

(a—1)/B=04 (20)

is satisfied. As will be noted later, (T,) oscillates around a
stationary value and condition (20) is necessary but not suf-
ficient for algorithm (17) to be convergent. On the other
hand, when S gradually becomes large with « fixed, from
Eq. (17) we find that T, approaches zero, which is a station-
ary solution to both Egs. (17) and (18). This situation is not
reflected in condition (20). That is, we are not interested in
the solution 7;=0 but Eq. (20) does not exclude this solution.
Based on these observations we studied mainly along the line
(a=1)/B=0.355 in the parameter space (a,f). Especially
our results are shown for three points, P;(8=0.005), P,(B
=0.01), and P5(B=0.015).

B. Analytical and simulational approaches

Let us first consider how T, changes with time. From Eq.
(17) we notice that the ensemble average of T, (over many
runs with the initial condition 7, fixed) a,=E(T,) of T,
evolves in time according to

Apy1 = aan_lBE(<yn>(Tn))a (21)

where (y,)(T,) is given by Eq. (11) with T replaced by T,,. In
order to make Eq. (21) a recursion equation for {a,}, we
assume E((y,)(T,)) =(y(a,), thus leading to

Apy) = Qd, — ,B<yn>(an)a (22)
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FIG. 4. Temperature dynamics in a transient (r<<30) state and in
a stationary (r>30) state, simulation Eq. (17) and theory Eq. (22).

Equation (22) is a more precise description of the tem-
perature evolution than Eq. (18), since the latter cannot cap-
ture the oscillation of temperature as shown below. If one
specifies ay=T,, Eq. (22) can be solved to give a,=E(T,)
uniquely.

We plot in Fig. 4 one realization of the random process
{T,} and a, at an early stage including the transient state (¢
< 30) and in a stationary state (+>230) for (a, 8) correspond-
ing to P;. It is seen that 7, shows large fluctuations super-
imposed on oscillatory behavior of a, with period 7/ wj.

By experiments we numerically obtain p(y|s) by sam-
pling the pair (s,,y,) in a stationary state and this yields
M(s:y) from Egs. (3) and (4). In Fig. 1 we plot M(s:y) for
three parameter sets represented by P; (i=1,2,3). Each of
the horizontal line segment LS; (i=1,2,3) in Fig. 1 stands
for the center and the amplitude of the oscillation of a,,.

It is first remarked that the averages of temperature for
P; (i=1,2,3) nearly coincide with T%, shown as a vertical
line in Fig. 1. That is, ST seems to bring the temperature T
naturally to the optimal one, 7%, a desirable property of ST.
This property turns out to be not sensitive to & and (3, so long
as it is located in the range 0.3 = (a—1)/B8=0.36. Second we
note that as the amplitude of temperature oscillation in-
creases, M(s:y) decreases, since temperature is sampled
from wider range away from the SR temperature 7™

IV. ST OF THE THRESHOLD
A. Model with two thresholds

Now we turn to ST of a threshold, which is usually held
fixed in SR studies. We first modify model (1) by introducing
two thresholds, i.e.,

yn=g01,02(sn+§n)7 (23)

where ggl,gz(x): 1(=1) for x> 6,(x< 6,) and gal,ez(x):O for
0, <x<6,. &, is the Gaussian noise as before, Eq. (2), for the
fixed temperature 7 and the input signal s, is taken to be Eq.
(6) with A;=0.5 and w;=0.5.

Naturally the two-threshold system (23) shows SR char-
acteristics for fixed threshold values as will be touched upon
in relation to Fig. 6 below. It is noted that the threshold
model (23) was recently studied [18] in connection with fil-
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tering, where the signal s, was taken to be the Ornstein-
Uhlenbeck process instead of the deterministic one, Eq. (6),
and threshold (23) was introduced as an observer of the
Brownian motion s, [18]. In this paper we want to study
properties of the system, Egs. (23) and (24) below more di-
rectly without recourse to filtering.

B. Threshold dynamics and mutual information

As in the case of ST of temperature, Eq. (17), we intro-
duce a simple adaptation of 6, and 6, described by

01 ps1= Y01, +Fd&(1,y,),

02,n+l = y02,n - Fé(_ 19yn)- (24)

F is taken to be a positive constant and y is 0 <y<1; thus
0, ,>0> 0, , if this relation holds for n=0. It is seen in Eq.
(24) that 6, ,, decreases and 6, , increases if no firing events
occur, that is, y,_;=0. If, on the other hand, a firing event
occurs through y,_;=1, which we call y=1 firing, 6, , is
increased by F due to this firing event. Similarly 6, , is de-
creased by F through the y=—1 firing event. Through this
mechanism we expect and confirm numerically that the
threshold values are self-tuned or adjusted to the input sig-
nals and noises.

To estimate appropriate values for the two parameters
(y,F), we take the ensemble average of Eq. (24), as we did
for Eq. (17), to obtain

a1 = vy, + Fp,(1 |a1,n)a

Ay 1 = Yo — Fpn(_ 1 |a2,n)7 (25)

where p,(1|a,,) denotes the probability that y,=1 when the
threshold 6, is a, ,. That is,

pa(llay ) =erfc[(a; , - 5,)N2T)2. (26)

Similarly we have p,(-1|a,,)=erfc[(-a; ,+s,)/ \270/2.

In Fig. 5 we plot one realization (0, ,,6,,) and its ana-
lytical prediction (ay ,,a,,), Eq. (25), for y=0.95, F=0.1 but
for different temperatures, (a) 7=0.03, (b) 7=0.1, and (c)
T=0.5. We see generally that the process (6, ,,,6,,) fluctu-
ates around the average (ay,,a,,).

It is noted that when T is low enough [Fig. 5(a)], there
occur only y=1 (-1) firing events around the top (bottom) of
the input sinusoidal signal, Fig. 5(d). This is reflected to the
large mutual information M(s:y) as depicted in Fig. 6. On
the other hand, for large T [Fig. 5(c)], we observe a lot of
y=-1 firing events even around the top of the input signal,
resulting in small M(s:y). In Fig. 5(b) we see that the behav-
iors of (6, ,,6,,) are intermediate between those in Figs.
5(a) and 5(c).

In Fig. 6 M(s:y), obtained by collecting samples of pairs
(s,,y,) as in Sec. III, is plotted as a function of T for the
three cases F=0.05, F=0.1, and F=0.2 from the top (y
=0.95). Also depicted is M(s:y) for system (23) without ST
(solid line).

We first note that SR behavior is observed for the two-
threshold system (23) (see the solid line in Fig. 6) if ST is not
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FIG. 5. (Color) 6, and 6, dy-
namics as obtained from simula-
tions (6): red lines; 6,: green

lines) and from theory (6;: pink
lines; 6,: blue lines) for y=0.95
and F=0.1. From the top 7=0.03,
0.1, and T=0.5. Figure 5(d) de-
picts the input signal, Eq. (16).

introduced. If F, the size of one-step variation in 6, ,, is large
we observe large fluctuations in 6;, dynamics (not shown)
and the ability of 6, to follow input signals {s,} deterio-
rates. Reflecting this tendency it is seen in Fig. 6 that M(s:y)
decreases as F' increases for fixed 7. On the other hand, we
confirmed numerically that M(s:y) increases monotonically
as F is decreased up to 0.001 for fixed 7(=0.1). In this con-
nection it is remarked that as F, which may be considered as
representing a learning velocity, becomes small, generally
one needs longer time for computation to obtain reliable val-
ues for M(s:y). This situation is similar to what happens to
M(s:y) in Fig. 1. The smaller 8 in Eq. (17) results in smaller
oscillations of T, and larger M(s:y) but with longer compu-
tational time.

Next let us consider the T dependence of M(s:y). As
shown in Fig. 5, the ability of 6, , to follow input signals {s,,}
deteriorates as 7T becomes large, just as in the case of F.
More precisely, if we take 7=0.03, 6; ,(6,,,) nicely follows
input signals when it is positive (negative). It is easily seen

0.18 T T T T T T T
016 | -
014 -
012 | .
01k . o i
008 . .
006 F o -
0.04 |

0.02 |-

0 I I I I I I I
0 01 02 03 04 05 06 0.7 08

T

M(s:y)

FIG. 6. M(s:y) as a function of T for self-tuned two-threshold
system (23) with y=0.95. The three dotted lines from the top cor-
respond to F=0.05, 0.1 and F=0.2. Also shown is M(s:y) for the
two-threshold system (23) with fixed threshold, ;=1 and 6,=-1
(solid line).

that the performance of information processing is enhanced
when input signals nearly coincide with the threshold. This
explains the general T dependence of the three dotted lines in
Fig. 6.

V. SOME REMARKS AND CONCLUSIONS

In concluding this paper we briefly comment on simulta-
neous ST of T and 6. Let us introduce ST to system (1). For
T adaptation we tentatively take Eq. (17) and for 6 adapta-
tion we choose Eq. (24) (suitably modified for the one
threshold case), resulting in ST represented by

Tn+1=aTn_Byn (a> 1’ﬂ>0),
0p1=7v0,+Fy, (0<y<I,F>0). (27)

A simulation study on Eq. (27) soon revealed that it is rather
unstable and 7 diverges or crosses the physical region T
>(0. These properties can be traced to the T dynamics in Eq.
(27). 1t is noted that the first term on the right-hand side (rhs)
of this equation contributes to increasing 7. When T, be-
comes large, increment 7,,,;—7, can be large and the second
term can only have minor effects to compensate this incre-
ment; thus 7, easily goes to %. When T becomes small, on
the contrary the first term on the rhs of Eq. (27) has small
effects compared with the second one and it is seen that 7,
CIOSses Zero.

This instability could be avoided in Sec. III since we fixed
the threshold. Now that we allow time change in the thresh-
old, it turned out to be very difficult to find parameters in Eq.
(27) which give physical solution for {7, 6,}.

With this observation we modified Eq. (27) to

Tn+l=aTn+B(l_yn) (0<a<1’B>0)7

011+l:70n+Fyn (O<7<1’F>O)’ (28)

which removes the instability mentioned above. Taking en-
semble average of Eq. (28) we can derive as before the fol-
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FIG. 7. A limit cycle from Eq. (29) for (y,F)=(0.95,0.1) and
(a,8)=(0.995,0.002).

lowing equation for a; =E(T,) and a, ,=E(6,):

al,n+l = aal,n + B[l - <yn>(al,nva2,n)]s

Ay pe1 = Yo g + F<yn>(al,n’a2,n)’ (29)

with (y,)(a, ,,a,,) given by Eq. (11) with 6 and T replaced
by a,, and a, ,, respectively. We confirmed numerically that
(ay ,.a,,) as n— is attracted to a limit cycle.

Since the set of ST Eq. (28) contains four parameters, we
fixed (y,F)=(0.95,0.1), which was used in Sec. IV for
threshold self-tuning. Tentatively setting (a=0.995,8
=0.002) we show in Fig. 7 the limit cycle produced by the
map dynamics (29). This is a typical limit cycle we found by
solving Eq. (29). For a given T we have two 6 and the ellipse
leans with negative gradient (correlation). Thus when T is
large € can be smaller, as compared with the case when T is
small. This (negative) correlation is expected to result in
larger firing rate (time average firing rate 0.42 with ST and
0.35 without ST), and consequently larger M(s:y) compared
with the case of no ST.

To confirm this aspects of ST we fixed (y,F)
=(0.95,0.1). For each of the three B values, 8,=0.0015 (blue
circles), 3,=0.002 (green circles), and B3=0.0025 (red
circles) we took 20 « values from 0.99 to 0.9995 with the
width 0.0005. In Fig. 8 we plot M(s:y), which is obtained by
simulations as in Secs. III and IV, for («,B;) (i=1,2,3) as a
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FIG. 8. (Color) M(s:y) as a function of (time averaged) tem-
perature with ST based on Eq. (28). For (y,F)=(0.95,0.1) fixed,
and for 8=0.002 we chose 20 « values and corresponding M(s:y)
are plotted with green circles. (From left to right « values are in-
creasing.) For 8=0.0025 (red) and $=0.0015 (blue) M(s:y) are
also plotted. For comparison M(s:y) with no ST (6#=1) is shown as
a full curve.

function of (time) averaged temperature T. For the sake of
comparison M(s:y) without ST for =1 (full curve) is also
plotted as a full curve in Fig. 8.

We notice that the overall performance of ST is good,
especially when an average T is slightly larger than the SR
temperature, 7*. In this T region firing rate (on average) was
found to be increased by about 1/4 of the case without ST.

Our studies on simultaneous ST of both 7 and 6 is rather
limited but suggest some potential utility of a limit cycle,
which realizes “negative” correlation between 7 and 6, de-
sirable for efficient information transfer. However, we have
to mention that the parameters used to define the dynamics
of the ST mechanism, which appear in Eq. (27) and also in
Egs. (17) and (24), had to be tuned or chosen properly. This
issue may diminish the practical application of the ST
mechanism proposed in this work.
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